Rules of
Department of Natural Resources
Division 23—Well Installation
Chapter 5—Heat Pump Construction Code

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 CSR 23-5.010 Definitions</td>
<td>3</td>
</tr>
<tr>
<td>10 CSR 23-5.020 Certification and Registration of Heat Pump Systems</td>
<td>3</td>
</tr>
<tr>
<td>10 CSR 23-5.030 General Protection of Groundwater Quality and Resources</td>
<td>3</td>
</tr>
<tr>
<td>10 CSR 23-5.040 Location of Heat Pump Wells</td>
<td>3</td>
</tr>
<tr>
<td>10 CSR 23-5.050 Construction Standards for Closed-Loop Heat Pump Wells</td>
<td>4</td>
</tr>
<tr>
<td>10 CSR 23-5.060 Construction Standards for Open-Loop Heat Pump Systems</td>
<td>6</td>
</tr>
<tr>
<td>10 CSR 23-5.060 Construction Standards for Open-Loop Heat Pump Systems</td>
<td>6</td>
</tr>
<tr>
<td>10 CSR 23-5.070 Closed-Loop Heat Pump Systems That Use Refrigerants as the Heat Transfer Fluid (Rescinded December 30, 2018)</td>
<td>6</td>
</tr>
<tr>
<td>10 CSR 23-5.080 Plugging of Heat Pump Wells</td>
<td>6</td>
</tr>
</tbody>
</table>
Title 10—DEPARTMENT OF
NATURAL RESOURCES
Division 23—Well Installation
Chapter 5—Heat Pump Construction
Code

10 CSR 23-5.010 Definitions

PURPOSE: This rule specifically defines words used in Chapter 5 concerning heat pump wells, otherwise the definitions contained in 10 CSR 23-1.010 apply.

(1) Horizontal closed-loop heat pump well means a trench or pit usually parallel to the horizon into which a closed-loop pipe is placed for the purpose of heat transfer. Closed-loop heat pump systems installed in trenches or pits ten feet (10') or less in depth are exempt from these rules.

(2) Open-loop heat pump water supply well means a well drilled to supply water for the purpose of heat transfer. This type of well is to be constructed to domestic well standards. 10 CSR 23-3.010—10 CSR 23-3.100 if it produces less than seventy (70) gallons per minute or to public water supply standards if it produces more than seventy (70) gallons of water per minute.

(3) Open-loop water return well means a well constructed for the purpose of returning water that has passed through the heat pump unit to the same aquifer, at a similar depth, that was produced from in the open-loop water supply well.

(4) Vertical closed-loop heat pump well means a borehole perpendicular to the horizon deeper than ten feet (10') into which a closed-loop pipe is placed for the purpose of heat transfer.

10 CSR 23-5.030 General Protection of Groundwater Quality and Resources

PURPOSE: This rule prevents the use of heat pump wells for any other purpose.

(1) Heat pump wells once constructed shall not be converted to any other type of well, except by written approval by the division.

(2) It is the obligation and responsibility of the heat pump installation contractor to verify that the heat pump system is constructed according to the rules. On open-loop systems that utilize groundwater wells, it is the responsibility of the water well installation contractor to ensure that the integrity of the annular seal remains viable for three (3) years after the date of certification unless it can be shown that the well seal has been damaged by other persons.

10 CSR 23-5.040 Location of Heat Pump Wells

PURPOSE: This rule sets standards for the placement of heat pump wells.

(1) A vertical heat pump well shall be located on a site which has good surface drainage and prevents the accumulation of water within ten feet (10') of the well and any buried pipes.

(2) Vertical heat pump wells shall not be located within certain distances from pollution or contamination sources. A vertical heat pump well shall be at least—
(A) Three hundred feet (300') from a storage area for commercial fertilizers or chemicals, landfill, lagoon, or above-ground or underground storage tank for petroleum, petroleum products or chemicals.

(B) One hundred feet (100') from a below-grade manure storage area, cesspool, lagoon, unplugged abandoned well, subsurface disposal field (lateral field), grave, building or yard used for livestock or poultry, privy, or other contaminants that may drain into the ground.

(C) Fifty feet (50') from an existing operating well, septic tank, buried sanitary sewer, rim of a sinkhole, a pit or unfilled space below ground surface, a sump, except that a closed-loop heat pump well may be drilled closer than fifty feet (50') to a basement or another heat pump well.

(3) Horizontal heat pump loops should be at least two feet (2') above or below any other intersecting underground piping (to prevent freezing of the water lines) or wiring on the property, except a soaker pipe for the heat pump system used to keep the soil moisture constant.

(4) A variance may be applied for if setback distances cannot be met. The variance must be obtained in advance from the division.

(5) Any heat pump well installed in the state of Missouri, which encounters oil and/or gas, must have a grout plug from fifty feet (50') below the oil and/or gas bearing zone to fifty feet (50') above the oil and/or gas bearing zone. The grout plug must be composed of neat cement grout with a two percent–six percent (2%–6%) bentonite additive and be placed via tremie. The well must be grouted as stated in 10 CSR 23-5.030 for steel and 10 CSR 23-5.070 for plastic and must be grouted full-length.

(5) Borehole Size. The hole size for heat pump wells that are grouted full-length with high solids bentonite slurry must be obtained in advance from the division. There must be at least one-half inch (1/2") between the hole and all pipes. There must be at least one-half inch (1/2") between the hole and all pipes. If full-length high solids bentonite slurry is not used, then the following hole sizes are required:

1. At least a six-inch (6") borehole when the loop pipe is one and one-quarter inch (1 1/4") or greater in diameter;
2. At least a five-inch (5") borehole when the loop pipe is less than one and one-quarter inch (1 1/4") in diameter.

10 CSR 23-5.050 Construction Standards for Closed-Loop Heat Pump Wells

PURPOSE: This rule describes the minimum standards for a properly constructed closed-loop heat pump well.

(1) Casing Material. If permanent casing is needed in a heat pump well, it must meet standards set in 10 CSR 23-3.030 for steel and 10 CSR 23-3.070 for plastic and must be grouted full-length.

(2) Heat Pump Loop Material. In a closed-loop heat pump well, the material used to make up the heat-exchange loop that is placed in the borehole or trench must be composed of high density polyethylene or polybutylene pipe and must be installed and grouted without delay upon completion of drilling each well.

(A) High Density Polyethylene Pipe. This pipe must be manufactured in accordance with dimensional specifications of ASTM D-2513 or ASTM F-714 and must have a minimum cell classification of PE345434C or PE355434C when tested under ASTM D-3350 to be acceptable for use in closed-loop heat pump systems.

(B) Polybutylene Pipe. This pipe must be manufactured in accordance with ASTM D-2581. The pipe material must be—

1. Either Class B (general purpose and dielectric, in colors) or Class C (weather resistant, black in color containing not less than two percent (2%) carbon black);

2. Type II (density, ninety-one thousandths to ninety-two thousandths (.0091-.0092) grams per centimeter (g/cm));

3. Grade 1 (flow rate twenty-five thousandths to seventy-five thousandths (.0025-.0075) gallons per ten (10) minutes (g/10 min)).

(C) Other pipe may be used if approval is granted in advance by the board and the following standards:

(A) Heat transfer fluids must be composed of—

1. Inhibited glycol;
2. Methanol;
3. Water;
4. Ethanol; or
5. Other fluids may be used if approval by the division is received in advance.

(B) The fluid as it is used in a diluted state in the closed-loop must have the following properties:

1. Be ninety percent (90%) biodegradable;
2. Demonstrate low corrosion to all materials common to ground source heat pump systems;
3. Be homogeneous, uniform in color, free from lumps, skins, and foreign material that would be detrimental to fluid usage;
4. Not have a flash point lower than ninety degrees Celsius (90°C);
5. Not have a five- (5-) day biological oxygen demand (BOD) at ten degrees Celsius (10°C) that exceeds two-tenths (0.2) gram oxygen per gram nor be less than one-tenth (0.1) gram oxygen per gram;
6. Have a toxicity that is less than the lethal dose (LD) of fifty (50) oral-rats of five (5) grams per kilogram; and
7. Show neither separation, or increase in turbidity, from exposure to heat or cold; and

(C) While this rule attempts to define antifreeze fluids that will protect the environment, it is the responsibility of the permittee to take necessary precautions to ensure groundwater protection.

(5) Borehole Size. The hole size for heat pump wells that are grouted full-length with high solids bentonite slurry (see 10 CSR 23-5.050(9)(A)) must be of sufficient size to allow placement of the pipe and placement of a tremie to emplace the high solids bentonite slurry grout. The slurry must be pumped via tremie to fill the hole and surround all pipes. There must be at least one-half inch (1/2") between the hole and all pipes. If full-length high solids bentonite slurry is not used, then the following hole sizes are required:

(A) At least a six-inch (6") borehole when the loop pipe is one and one-quarter inch (1 1/4") or greater in diameter;

(B) At least a five-inch (5") borehole when the loop pipe is less than one and one-quarter inch (1 1/4") in diameter.

(7) Grouting Depth of Vertical Heat Pump Wells. Grouting the annulus of a heat pump well must be completed immediately after the well is drilled due to cave-in potential in the uncased hole.

(A) Vertical heat pump wells require the annular space between the loop material, borehole, and/or casing to be grouted full length using materials in 10 CSR 23-5.050(8).

(B) Vertical heat pump wells drilled two hundred feet (200') or less that are not grouted full-length, must follow the hole size requirements stated in section (5) and non-sluurry bentonite plugs must be placed in the borehole. A plug (first plug) must be placed forty feet (40') above the total depth of the borehole. This plug must be composed of bentonite chips or pellets utilizing at least one (1) bag of bentonite resulting in at least a five foot (5') plug. Every forty feet (40') of borehole that exists above the first plug must have a plug set as described in this section. A near surface plug, consisting of bentonite granules or powder, must be set from a point ten feet (10') below the bottom of the trench that connects the closed-loop to the heat pump machine to the base of the trench. All bentonite plugs must be hydrated immediately with six to eight (6–8) gallons of potable water for each bag of bentonite after emplacement if they are in the unsaturated zone. All clean fill material placed between the bentonite plugs must be chlorinated. Clean fill is defined as sand, local drill cuttings, pea gravel, varied sized agricultural lime, or clean aggregate free from contamination. Contractors utilizing this type of grouting method must notify the division at least forty-eight (48) hours prior to beginning any construction on the system. The division will maintain a list of current notification methods (includes, but is not limited to, telephone, fax, email, voice mail, and the department’s online notification system) and contact information available online or upon request. Notification information must include: owner name, owner address, GPS location, date work is to begin, primary contractor name, primary contractor permit number, drilling contractor name, and drilling contractor permit number.

(8) Approved Grout Materials. The following four (4) grout types are permitted for use in heat pump wells:

(A) Bentonite Slurry. High solids sodium bentonite slurry must be at least twenty percent (20%) by weight solids to be used as grout. Thickened drilling mud or thinner bentonite slurry is strictly prohibited. Specialized pumps are required to pump a high solids bentonite slurry. When bentonite slurry is used, it must be applied in one (1) continual motion, through a tremie lowered to the grouting point. It is recommended that full-length grout be used in all vertical closed-loop heat pump wells. The tremie pipe may be removed while the borehole is filled or removed afterward;

(B) Non-sluurry Bentonite. Chipped or pelletized bentonite varieties that are designed to fall through standing water may only be used when sealing the annulus of a well that is below the water level in the saturated zone. Complete hydration is difficult to achieve when using dry non-sluurry bentonite in the unsaturated zone. All non-sluurry sodium bentonite varieties may be used in the unsaturated zone if the hole is dry and no bridging occurs. The dry bentonite must be hydrated after emplacement. The effective use of non-sluurry bentonite as a sealing agent depends on the efficient hydration of the product;

(C) Thermal Grout Slurry. Grout containing at least seven and one-half percent (7.5%) by weight bentonite solids and no more than sixty-five percent (65%) by weight silica solids may be used as grout. Specialized pumps are required to pump thermal grout slurry through a tremie lowered to within twenty feet (20') of the base of the borehole; and

(D) Other Grout. Other types of grout may be used if approval is granted in advance by the division.

(9) Wells that Encounter Karst Conditions. When a borehole encounters caves or larger fractures, grouting may become difficult. Chlorinated clean fill, such as gravel or sand, may be used to fill these intervals. Small fractures are effectively sealed by using chipped, hydrated bentonite. If the borehole cannot be grouted as specified, it must be plugged.

(10) Jetted Heat Pump Wells. Closed-loop heat pump wells that are jetted in Area 5 (see Figure 5) must not be deeper that seventy-five feet (75') and at least the upper ten feet (10') of borehole must be grouted.

(11) Heat Pump Wells in Special Area 3. Portions of Franklin County within and south of the city of New Haven are listed as Special Area 3 (Figures 7D and 7C, 10 CSR 23-3.100(7)) due to the contamination of portions of the aquifer by one (1) or more of the following chemicals of concern: trinitrotoluene (TNT) and dinitrotoluene (DNT) at the Army Corps of Engineers (COE) site, 2,4,6-TNT, 2,4-DNT, 2,6-DNT, dinitrobenzene (1,3-DB), nitrobenzene (NB), nitrate, uranium, and trichloroethylene (TCE) at the Department of Energy (DOE) main site, uranium and 2,4-DNT at the DOE Quarry, or other contaminants of the National Public Drinking Water Regulations (NPDWR). In this area it is necessary to utilize more stringent construction standards for new heat pump wells that are drilled into the aquifer. In Special Area 3 a qualified and properly trained individual shall collect all groundwater samples for analysis of chemicals of concern.

(A) The division shall be consulted before constructing a new heat pump well in Special Area 3. The division will provide specific guidance on heat pump well drilling protocol and construction specifications on a case-by-case basis. The division must provide written approval for all new heat pump wells in Special Area 3 prior to construction.

(B) All drilling-derived fluids and solid materials from heat pump wells drilled in Special Area 3 shall be containerized, sampled, and managed pursuant to Missouri hazardous waste management regulations.

(C) Any heat pump well drilling operation, in which PCE and/or TCE is encountered in a pure-product phase (also known as dense nonaqueous phase liquid or DNAPL), drilling shall cease and the division shall be notified immediately. The division will determine further action.

(12) Heat Pump Wells in Special Area 4. Portions of St. Charles County west of the city of Weldon Spring are listed as Special Area 4 (Figure 7D, 10 CSR 23-3.100(8)) due to the contamination of portions of the aquifer by one (1) or more of the following chemicals of concern: trinitrotoluene (TNT) and dinitrotoluene (DNT) at the Army Corps of Engineers (COE) site, 2,4,6-TNT, 2,4-DNT, 2,6-DNT, dinitrobenzene (1,3-DB), nitrobenzene (NB), nitrate, uranium, 2,4-DNT at the DOE Quarry, or other contaminants of the National Public Drinking Water Regulations (NPDWR). In this area it is necessary to utilize more stringent construction standards for new heat pump wells that are drilled into or through the shallow aquifer defined as the Burlington Keokuk/Fern Glen formation(s) at the main site and the Kimmiswick limestone at the DOE Quarry. In Special Area 4 a qualified and properly trained individual shall collect all groundwater samples for analysis of chemicals of concern. Sampling qualifications and training requirements will be determined in advance of sampling by the division and approval will be issued in written format.
(A) The division shall be consulted before constructing a new heat pump well in Special Area 4. The division will provide specific guidance on heat pump well drilling protocol and construction specifications on a case-by-case basis. The division must provide written approval for all new heat pump wells prior to construction.

(B) All drilling-derived fluids and solid materials shall be containerized, sampled, and managed pursuant to Missouri hazardous waste management regulations.

10 CSR 23-5.060 Construction Standards for Open-Loop Heat Pump Systems That Use Groundwater

PURPOSE: This rule sets standards for open-loop heat pump systems that use wells to produce or return groundwater.

1. Open-loop heat pump systems and their installers that utilize existing surface water supply which is plumbed through the heat pump machine and returned to the same surface water supply are exempt from these rules.

2. Open-Loop Heat Pump Systems and Groundwater Supply Wells. An open-loop heat pump uses groundwater produced from wells which are plumbed through the heat pump machine where the heat transfer of the groundwater is accomplished. The groundwater is then utilized at the surface or returned to the ground via a return well. Any newly drilled or reconstructed well utilized for supply or return water must meet the construction standards set out in 10 CSR 23-3. Any well that was constructed before October 1987 that is utilized as the water supply or return for an open-loop heat pump system is exempt from these rules, except that the surface disposal of the water may fall under the Division of Environmental Quality rules and the return of the produced water via a well must meet rules set out in this section.

3. **Surface Disposal of Used Water.** After the water passes through the heat pump machine, it may be disposed of to the surface only if the water remains on the landowner’s property. It may not be run to drainage that leaves the property unless applicable permits are secured through the Water Protection Program, Division of Environmental Quality. If the heat pump utilizes more than twenty-five (25) gallons of water per minute when it is in operation, surface disposal of the used water is prohibited.

4. **Water Return and Supply Wells for Domestic Heat Pump Applications.** Water return wells shall meet the requirements set out in 10 CSR 23 Chapters 1, 2, and 3 concerning casing, casing depth, well seal, borehole, grouting, and reporting. The depth of the water return well must not exceed the depth of the water supply well. Water must be returned to the same aquifer, at a similar depth that it was taken from in the water supply well. A sanitary well seal or a pitless adapter may be used, and the water return pipe must extend at least twenty feet (20') below the static water level.

5. **Water Return Wells for Nondomestic Heat Pump Applications.** Specifications for water return wells in other than domestic applications will be determined on a case-by-case basis by the division, taking into account the water quality and quantity, geology, hydrology and water usage in the area.

6. To drill and construct an open-loop heat pump well or a water return well, the driller must have a nonrestricted water well installation permit.

10 CSR 23-5.070 Closed-Loop Heat Pump Systems That Use Refrigerants as the Heat Transfer Fluid

(Rescinded December 30, 2018)

10 CSR 23-5.080 Plugging of Heat Pump Wells

PURPOSE: This rule sets standards on the proper plugging of wells used in heat pump applications.

1. **Vertical Closed-Loop Heat Pump Wells.** To plug a properly constructed vertical closed-loop heat pump well the following specifications must be met:

 (A) Remove all heat transfer fluid from the closed-loop and take necessary precautions to ensure groundwater protection;

 (B) Dig down to the top of borehole and cut off the loop pipe. This must be at least three feet (3') below the surface. Pump the remaining loop full of bentonite or cement slurry. Allow the grout to fill the upper one foot (1') of borehole. Fill remaining hole with compacted earth or pavement; and

 (C) Submit registration report form and fee to the division within sixty (60) days which documents the proper plugging of the heat pump well. Upon review and approval of the registration report form, a registration number will be sent to the landowner which designates that the well was plugged according to the minimum standards.

2. Open-Loop Heat Pump Wells. Wells used to supply water for the heat pump and water return wells must be plugged as set out in 10 CSR 23-3.110 Plugging of Wells. A registration report form and fee must be submitted.

3. **Plugging Improperly Constructed Heat Pump Wells.** When it is determined by the division that a heat pump well is constructed improperly, it must be brought into compliance with the rules or plugged. To plug an improperly constructed heat pump well, the following specifications must be met:

 (A) Remove all pipes from hole;

 (B) Clean out well bore of loose material;

 (C) Plug well full-length with approved grout; and
(D) Submit registration report form and fee.
